Miscanthus: biofuels, invaders or both?

Emily Heaton¹, Allison Snow², Maria Mariti² and Catherine Bonin¹

¹Dept. Of Agronomy, Iowa State University

²Dept. of Evolution, Ecology, and Organismal Biology, The Ohio State University

36 Billion Gallons of Alternative Fuel... 2007 Energy Independ ence and Security Act

2

Construction High water use efficiency fire? Recycle achier CC, Davis S, NiedenCe, 313. Recycle achier CC, Davis S, SiedenCe, 313. Recycle achier CC, Davis S, SiedenCe, 313. Sterile - non-in. Winter.

- Easily removed
- No known pests/diseases
- Easily managed

What Are "The Canes"? - multiple interbreeding genera and species Examples include:

Distribution of three Asian Miscanthus species

in Denmark, then distributed throughout Europe and U.S. as an ornamental plant. Slide courtesy of Tom Voigt, UIUC.

A higher yielding alternative to switchgrass in some areas, especially the Midwest

7

- High Yielding (6-15 t/acre)
- Sterile clone
- Must be planted from rhizomes
- New to US: 10's to 100's of acres
- Widely planted in Europe: thousands of acres
- Used for heat and power with coal

Miscanthus and Maize Biomass Accumulation

Green Leaf Area Index and Duration

Dohleman, et al., (2009) Plant Physiology

Regional Feedstock Partnership Sun Grant Initiative Biomass Research, Education and Outreach

http://www.sungrant.org/Feedstock+Partnerships/Research+Plots/

Approach

Rhizomes

Plugs

M. × giganteus stems?

Propagule by Temperature

Boersma & Heaton (2012) GCB Bioenergy, 4, 680-687.

Nic Boersma John Caveny

Miscanthus, a closer look

M. × giganteus floret

M. sinensis vs. M. sacchariflorus

M. sinensis

bunch grass
hairs = spikelet
awns on florets
firmer flowers in many colors
many foliage colors
August-October flowering

M. sacchariflorus

aggressive
rhizomes
hairs = 2x spikelet
no awns
white soft flowers
only green
foliage
August-early
September
flowering

http://miscanthus.cfans.umn.edu/identification.html

M. Sinensis - Japan

Stewart RJ, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero GA (2009) The ecology and agronomy of *Miscanthus sinensis*, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy, **1**, 126-153.

http://www.ask.com/wiki/Miscanthus_sinensis

M. Sinensis – Chinese Silvergrass

http://www.bonap.org/BONAPmaps2010/ Miscanthus.html EDDMapS. 2012. Early Detection & Distribution Mapping System. The University of Georgia -Center for Invasive Species and Ecosystem Health. Available online at http://www.eddmaps.org/; last accessed December 12, 2012.

Distribution of three Asian Miscanthus species

in Denmark, then distributed throughout Europe and U.S. as an ornamental plant. Slide courtesy of Tom Voigt, UIUC.

M. sacchariflorus – Amur silvergrass

http://www.bonap.org/BONAPmaps2010/ Miscanthus.html EDDMapS. 2012. Early Detection & Distribution Mapping System. The University of Georgia -Center for Invasive Species and Ecosystem Health. Available online at http://www.eddmaps.org/; last accessed December 12, 2012.

M. sacchariflorus

Eastern Iowa, 2012. Photo credit: Virgil Schmitt

Right place, right time?

M. sinensis

M. sacchariflorus

Current work: assessing Miscanthus (and switchgrass) invasive potential

Goal: understand how likely new varieties are to flower, reproduce, establish and compete compared to existing varieties and native ecotypes

Model pollen flow and population dynamics

- 2 locations: lowa, Ohio
- Range of germplasm: locally collected ecotypes, publically available cultivars, advanced breeding lines
- 3 experiments along ontogenic gradient: seed survival, seedling competition, mature plant fitness

How long do switchgrass seeds last in the seed bank?

- Place clean, live, counted seed (tetrazolium test) in mesh bags
- Bury, dig up annually (3 years)
- Count seedlings that germinate

Seed Addition

How do seeds germinate and compete with competition?

- Sow at different densities
- 2 levels of competition provided by natural weed populations
- Seed production, biomass of switchgrass measured annually

Clonal Competition

Once established, how competitive are individual clones?

- Clonal seedlings planted with 'high' or 'low' competitor plants (high = bromus tectorum; low = Schizachyrium scoparium)
- Flowering time, seed set, morphology, biomass monitored
- Combined with other experiments' results for systems modeling

Quinn LD, Allen DJ, Stewart JR (2010) Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. GCB Bioenergy, **2**, 310-320.

Additional references

- Nishiwaki A, Mizuguti A, Kuwabara S et al. (2011) DISCOVERY OF NATURAL MISCANTHUS (POACEAE) TRIPLOID PLANTS IN SYMPATRIC POPULATIONS OF MISCANTHUS SACCHARIFLORUS AND MISCANTHUS SINENSIS IN SOUTHERN JAPAN. American Journal of Botany, 98, 154-159.
- Stewart RJ, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero GA (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy, 1, 126-153.
- Quinn LD, Matlaga DP, Stewart JR, Davis AS (2011) Empirical Evidence of Long-Distance Dispersal in Miscanthus sinensis and Miscanthus X giganteus. Invasive Plant Science and Management, 4, 142-150.
- Quinn LD, Allen DJ, Stewart JR (2010) Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. GCB Bioenergy
- Raghu S, Anderson RC, Daehler CC, Davis S, Wiedenmann RN, Simberloff D, Mack RN (2006) Adding Biofuels to the Invasive Species Fire? Science, 313.
- Barney JN, Ditomaso JM (2008) Nonnative Species and Bioenergy: Are We Cultivating the Next Invader? . Bioscience, 58, 64-70.

Speed Breeding in Action?

Winnsboro, LA 32.5 N lat. Dec. 5, 2007 Wink Alison

