To all plant breeders who contribute to the education of others by generously sharing their practical experiences in cultivar development.
Contents

Preface ix
Contributors xi

One • General Principles 1
 Walter R. Fehr

Two • Alfalfa 11
 Richard R. Hill, Jr.

Three • Apomictic Grasses 40
 E. C. Bashaw and C. Reed Funk

Four • Barley 83
 A. Earl Foster

Five • Cotton 126
 Joshua A. Lee

Six • Forage Grasses 161
 David A. Sleper

Seven • Forage Legumes 209
 Norman L. Taylor

Eight • Maize 249
 Arnel Roy Hallauer

Nine • Oat 295
 C. M. Brown and R. A. Forsberg
Ten • Peanut
 David A. Knauf, Allan J. Norden, and Daniel W. Gorbet

Eleven • Potato
 Robert W. Hoopes and Robert L. Plaisted

Twelve • Rapeseed and Mustard
 R. K. Downey and G. F. W. Rakow

Thirteen • Rice

Fourteen • Soybean
 Walter R. Fehr

Fifteen • Sugar Beet
 Garry A. Smith

Sixteen • Sunflower
 Jerry F. Miller

Seventeen • Tobacco
 E. A. Wernsman and Rebeca C. Rufty

Eighteen • Wheat
 R. E. Allan

Index

346
385
437
487
533
577
626
669
699
749
Preface

The commercial production of any plant species depends on the availability of cultivars that meet the needs of the producer and the consumer. The quest for new cultivars is a continual process due to the demand for greater productivity, higher quality, more resistance to pests, and other desired characteristics.

To design a strategy for cultivar development that makes the most efficient use of available resources, a plant breeder must choose from an array of alternative breeding methods. The choice is facilitated by learning from the experience of others who have successfully developed superior cultivars. In this book, successful plant breeders share their experiences and that of their colleagues. They provide a step-by-step description of the process of cultivar development for a crop species, discuss the alternative strategies that are available at each step of the process, and describe those strategies that have been used most successfully.

Crop species were chosen for this book to represent the major types of cultivars that are grown commercially. The development of asexually propagated cultivars, pure-line cultivars, synthetics, multilines, and hybrids are described in one or more of the chapters. Collectively, the chapters describe the application of all breeding methods that are currently used by plant breeders for cultivar development.

The initial stimulus for preparing the book was provided by the students in my plant breeding class at Iowa State University. In the class notes that became a part of Volume I of Principles of Cultivar Development, some descriptions were included as to how cultivars of several species had been developed. The students indicated that they found the descriptions useful for understanding the entire cultivar development process from start to finish and for understanding the theoretical aspects of plant breeding. They found it helpful to compare different breeding
methods by examining how each was applied in the successful development of a cultivar.

Recent books that describe the methodologies employed in molecular and cellular studies of plants have been a valuable source of information to plant breeders interested in using these means to improve the efficiency and effectiveness of cultivar development. Similarly, Principles of Cultivar Development is intended to provide molecular and cellular biologists with detailed information on breeding methodologies they can use to establish research goals that will contribute to the genetic improvement of crop species.

ACKNOWLEDGMENTS

I am grateful to the many persons who contributed unselfishly of their time to make this book a reality: to the authors, who generously shared their many years of experience in plant breeding, utilized the experience of their colleagues in presenting a broad view of cultivar development for a crop species, patiently used the outline they were asked to follow in preparing their chapters, and gave serious consideration to the suggestions of the persons who reviewed their manuscripts; to the many plant breeders, who graciously provided information to the authors and reviewed the chapters; to the publication editors, Sarah Greene and Gregory Payne, who provided excellent technical assistance to the editor and the authors; and to my wife Elinor and to Holly Jessen, who made major contributions by drafting figures, typing information, indexing, and proofreading the book.

WALTER R. FEHR, EDITOR
Contributing Authors

R. E. Allan Wheat Genetics, Quality, Physiology and Disease Research, 209 Johnson Hall, Washington State University, Pullman, WA 99164-6420

E. C. Bashaw U. S. Department of Agriculture, Agricultural Research Service, Department of Soil and Crop Sciences, Texas A & M University, College Station, TX 77843

Charles N. Bollich U. S. Department of Agriculture, Agricultural Research Service, Texas A & M Research and Extension Center, Beaumont, TX 77704

C. M. Brown Department of Agronomy, University of Illinois, 1102 South Goodwin Avenue, Urbana, IL 61801

R. K. Downey Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2

Walter R. Fehr Department of Agronomy, Iowa State University, Ames, IA 50011

R. A. Forsberg Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706

A. Earl Foster Department of Agronomy, North Dakota State University, Fargo, ND 58105-5051

C. Reed Funk Department of Soils and Crops, P. O. Box 231, Lipman Hall, Cook College, Rutgers University, New Brunswick, NJ 08903
Daniel W. Gorbet Agronomy Department, University of Florida, Marianna, FL 32446

Arnel Roy Hallauer U. S. Department of Agriculture, Agricultural Research Service, Department of Agronomy, Iowa State University, Ames, IA 50011

Richard R. Hill, Jr. U. S. Regional Pasture Research Laboratory, 227 Hickory Road, State College, PA 16801

Robert W. Hoopes Department of Plant Breeding and Biometry, 252 Emerson Hall, Cornell University, Ithaca, NY 14853

David A. Knauf Agronomy Department, 2183 McCarty Hall, University of Florida, Gainesville, FL 32611

Joshua A. Lee Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620

Kent S. McKenzie Rice Research Station, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Crowley, LA 70527-1429

Jerry F. Miller U. S. Department of Agriculture, Agricultural Research Service, Department of Agronomy, North Dakota State University, Fargo, ND 58105-5051

Karen A. Kuenzel Moldenhauer Rice Research and Extension Center, Arkansas Agricultural Experiment Station, Stuttgart, AR 72160

Allan J. Norden Agronomy Department, 2183 McCarty Hall, University of Florida, Gainesville, FL 32611

Robert L. Plaisted Department of Plant Breeding and Biometry, 252 Emerson Hall, Cornell University, Ithaca, NY 14853

G. F. W. Rakow Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2

J. Neil Rutger U. S. Department of Agriculture, Agricultural Research Service, Department of Agronomy and Range Science, University of California, Davis, CA 95616
CONTRIBUTING AUTHORS

Rebeca C. Rufty Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620

David A. Sleper Department of Agronomy, 210 Waters Hall, University of Missouri, Columbia, MO 65211

Garry A. Smith U. S. Department of Agriculture, Agricultural Research Service, Crops Research Laboratory, Colorado State University, Ft. Collins, CO 80523

Norman L. Taylor Department of Agronomy, N-122 Agricultural Science Building-North, University of Kentucky, Lexington, KY 40546-0091

E. A. Wernsman Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
PRINCIPLES OF CULTIVAR DEVELOPMENT