Breeding Vegetable Crops
Edited by

MARK J. BASSETT

Vegetable Crops Department
University of Florida
Gainesville, Florida
Breeding Vegetable Crops
Contents

Contributors ix
Preface xi

1 Sweet Potato Breeding
ALFRED JONES, P. D. DUKES, and J. M. SCHALK
Origin and General Botany 2
Floral Biology and Controlled Pollination 3
Diseases and Insect Pests of Sweet Potato in the United States 9
Major Breeding Achievements of the Recent Past 10
Current Goals of Breeding Program 15
Selection Techniques for Specific Characters 17
Design of the Complete Breeding Program 26
Performance Trials of Advanced Lines 31
References 32

2 Watermelon Breeding
HUBERT C. MOHR
Introduction 37
Origin and General Botany 38
Floral Biology and Controlled Pollination 41
Major Breeding Achievements of the Past 42
Current Goals of Watermelon Breeding Programs 50
Selection Techniques for Specific Characters 54
Design of the Complete Breeding Program 56
Trials of Advanced Lines 63
References 64

3 Pepper Breeding
WALTER H. GREENLEAF
Origin of Capsicum 69
Taxonomy and Centers of Origin 69
Flower Structure and Pollination 75
Horticultural Classification of Pepper Varieties 76
Culture 82
Past Breeding Achievements 85
Breeding for Horticultural Characters 90
Breeding for Disease Resistance 97
Viruses 100
Sources of Germplasm for Breeding 110
Breeding Methods 111
Haploidy 116
Trisomics and Chromosome Mapping 118
Field Trials 119
Regional Trials 119
Experimental Designs 121
Variety Release Procedures 122
Plant Variety Protection Act 122
Capsicum Genes 123
References 127

4 Tomato Breeding
EDWARD C. TIGCHELAAR
Introduction 135
Origin and Early History 137
Botanical Classification 139
Reproductive Biology 140
Breeding History 143
Breeding Goals 146
Specific Breeding Objectives 149
Breeding Program Design 159
Release Procedures 165
Future Prospects 165
References 166

5 Cucumber Breeding
R. L. LOWER and M. D. EDWARDS
The Cucumber Industry 175
Origin and Botany 178
Floral Biology and Controlled Pollination 180
Major Breeding Achievements 187
Current Goals of Breeding Programs 190
Selection Procedures for Specific Characters 192
Breeding Methods 199
References 204

6 Squash Breeding
THOMAS W. WHITAKER and R. W. ROBINSON
Origin and General Botany 210
Floral Biology and Controlled Pollination 212
Major Breeding Achievements of the Recent Past 223
Current Goals of Breeding 224
Selection Techniques for Specific Characters 229
Design of the Complete Breeding Program 234
Trials of Advanced Lines 237
References 238
7 Snap Bean Breeding
M. J. SILBERNAGEL
Origin and General Botany 244
Floral Biology and Controlled Pollination 246
Major Breeding Achievements of the Recent Past 246
Current Goals of Breeding Programs 249
Selection Techniques for Specific Characters 256
Design of the Complete Breeding Program 271
Trials of Advanced Lines 274
References 277

8 Pea Breeding
EARL T. GRITTON
Origin 284
General Botany 285
Floral Biology and Controlled Pollination 288
Major Breeding Achievements 293
Current Goals of Breeding Programs 301
Selection Techniques for Specific Characters 304
Design of Breeding Program 310
Trials of Advanced Lines 315
References 316

9 Carrot Breeding
C. E. PETERSON and P. W. SIMON
Origin and General Botany 322
Floral Biology and Controlled Pollination 323
Breeding History 330
Current Goals 330
Selection Techniques 333
Growing the Seed Crop 340
Breeding Plan 346
Trials of Advanced Lines 350
Future Goals 351
References 353

10 Onion Breeding
LEONARD M. PIKE
Origin and General Botany 357
Floral Biology 361
Pollination Control 364
Breeding Onions 366
Management of Onion Seed Production 385
References 392

11 Cabbage Breeding
MICHAEL H. DICKSON and D. H. WALLACE
Origin and General Botany 396
Floral Biology and Controlled Pollination 398
Major Breeding Achievements of the Recent Past 414
Current Goals of Breeding Programs 416
CONTENTS

Selection Techniques for Specific Characters 417
Selection for Pest Resistance 420
Gene List 425
Design of a Complete Breeding Program 425
Trials of Advanced Lines 428
References 430

12 Lettuce Breeding
EDWARD J. RYDER
Origin and General Botany 436
Floral Biology and Controlled Pollination 440
Major Breeding Achievements of the Recent Past 445
Current Goals of Breeding Programs 450
Selection Techniques 458
The Overall Breeding Program 463
Breeding for Mosaic Resistance 464
Field Techniques and Practices 468
Trials of Advanced Lines 468
References 472

13 Sweet Corn Breeding
KARL KAUKIS and DAVID W. DAVIS
Origin and General Botany 477
Endosperm Composition 480
Germplasm Sources and Development 486
Major Achievements 488
Goals and Trends in Breeding Programs 489
Selection for Some Specific Characters 492
Designing the Breeding Program 498
Hybrid Evaluation 504
Maintenance of Inbred Lines 511
References 512

14 Asparagus Breeding
J. HOWARD ELLISON
Origin and General Botany 523
Floral Biology and Controlled Pollination 526
Major Achievements of the Recent Past 531
Current Goals of Breeding Programs 541
Selection Techniques for Specific Characters 545
Design of the Complete Breeding Program 554
A Typical Full-Year Field and Greenhouse Operation 563
Phenotypes Selected for Cloning 565
Trials of Advanced Lines 566
Seed Production 567
References 568

Index of Scientific and Common Names 571
Contributors

David W. Davis, Department of Horticultural Science and Landscape Architecture, University of Minnesota, St. Paul, MN 55108

Michael H. Dickson, Department of Horticultural Sciences, New York State Agricultural Experiment Station, Geneva, NY 14456

P. D. Dukes, U.S. Vegetable Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Charleston, SC 29407

M. D. Edwards, Department of Horticulture, University of Wisconsin, Madison, WI 53706

J. Howard Ellison, Department of Horticulture and Forestry, Cook College, Rutgers University, New Brunswick, NJ 08903

Walter H. Greenleaf, Department of Horticulture, Auburn University, Auburn, AL 36849

Earl T. Gritton, Department of Agronomy, University of Wisconsin, Madison, WI 53706

Alfred Jones, U.S. Vegetable Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Charleston, SC 29407

Karl Kaukis, Senior Agronomist Emeritus, Agricultural Research Department, Pillsbury Co., LeSueur, MN 56058

R. L. Lower, Department of Horticulture, University of Wisconsin, Madison, WI 53706

Hubert C. Mohr, Department of Horticulture and Landscape Architecture, University of Kentucky, Lexington, KY 40506

C. E. Peterson, Agricultural Research Service, U.S. Department of Agriculture, Department of Horticulture, University of Wisconsin, Madison, WI 53706

1Current address: Agricultural Research Service, U.S. Department of Agriculture, Department of Genetics, North Carolina State University, Raleigh, NC 27650.
2Current address: 1007 N. College St., Auburn, AL 36830.
3Current address: 1450 Linden Dr., University of Wisconsin, Madison, WI 53706.
4Current address: 1649 Linstead Dr., Lexington, KY 40504.
Leonard M. Pike, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843

R. W. Robinson, Department of Horticultural Sciences, New York State Agricultural Experiment Station, Geneva, NY 14456

Edward J. Ryder, U.S. Agricultural Research Station, P.O. Box 5098, Salinas, CA 93915

J. M. Schalk, U.S. Vegetable Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Charleston, SC 29407

M. J. Silberntagel, Agricultural Research Service, U.S. Department of Agriculture, Washington State University, Irrigated Agriculture Research and Extension Center, P.O. Box 30, Prosser, WA 99350

P. W. Simon, Agricultural Research Service, U.S. Department of Agriculture, Department of Horticulture, University of Wisconsin, Madison, WI 53706

Edward C. Tischelaar, Department of Horticulture, Purdue University, West Lafayette, IN 47907

D. H. Wallace, Departments of Plant Breeding and Biometry, and Vegetable Crops, Cornell University, Ithaca, NY 14853

Thomas W. Whitaker, Agricultural Research Service, U.S. Department of Agriculture, and Department of Biology, University of California, San Diego, P.O. Box 150, La Jolla, CA 92038
Students and teachers interested in plant breeding have many good textbooks from which to choose. All of these books present the established procedures of plant breeding, and a few of these textbooks show how plant breeding methods are applied to specific agronomic crops. There are relatively few books dealing with the genetic improvement of horticultural crops. *Advances in Fruit Breeding*, edited by Jules Janick and James Moore, has provided ample treatment of genetic improvement of many fruit crops, emphasizing the woody perennials of the temperate zone. *Breeding and Genetics in Horticulture* by C. North includes vegetable improvement, but the treatment given to each vegetable crop is very brief, often only a page or less. *Flower & Vegetable Plant Breeding* by L. Watts also addresses the improvement of several vegetable crops, but the maximum length of presentation for each crop is usually three pages. The last extensive description of the "state of the art" was the *Yearbook of Agriculture* 1937, which devoted 223 pages to the genetic improvement of vegetables.

The purpose of writing *Breeding Vegetable Crops* is to give extensive, up-to-date treatment to the genetic improvement of 14 vegetable crops. Each crop has its own unique requirements, opportunities, and challenges. Emphasis has been placed on the practical aspects of applying breeding techniques and current genetic knowledge to vegetable improvement. This book is intended for advanced students who already have had training in genetics and plant breeding; therefore, there are no chapters that present the fundamentals of these subjects. Great contributions to knowledge have been made during the last few decades in the various disciplines supporting genetic improvement of vegetables, but the reports of these researchers are widely scattered in the journal literature.

Each author contributing to *Breeding Vegetable Crops* has had long experience with his chosen crop and is able to "fill in the gaps" left by the brevity and highly specialized nature of journal reports. The task of each contributor involved evaluating the merits of these research reports, choosing only those aspects of value to vegetable breeders, and describing how to exploit this knowledge in a breeding program designed to meet various industry needs.
Both English and metric units of measure are used in this book, each where appropriate. The primary readership addressed by this book is the English-speaking agricultural science community. Because agricultural production is usually performed and reported in English units (at least in the United States) and much field research is conducted in English units, the clarity and easy accessibility of information are best served by being flexible on this issue. The rule is simple: describe and present the work in the same units originally used for the work and data collection.

M. J. Basset
Breeding Vegetable Crops